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Abstract. The flow is calculated with laminar separation (LS) at Reynolds numbers 50,000 and
140,000, and with turbulent separation (TS) at 140,000 and 3× 106. The TS cases are effectively
tripped, but compared with untripped experiments at very high Reynolds numbers. The finest grid
has about 18,000 points in each of 56 grid planes spanwise; the resolution is far removed from Direct
Numerical Simulations, and the turbulence model controls the separation if turbulent. The agreement
is quite good for drag, shedding frequency, pressure, and skin friction. However the comparison is
obscured by large modulations of the vortex shedding and drag which are very similar to those seen
in experiments but also, curiously, durably different between cases especially of the LS type. The
longest simulations reach only about 50 shedding cycles. Disagreement with experimental Reynolds
stresses reaches about 30%, and the length of the recirculation bubble is about double that meas-
ured. The discrepancies are discussed, as are the effects of grid refinement, Reynolds number, and
a turbulence-model curvature correction. The finest grid does not give the very best agreement with
experiment. The results add to the validation base of the Detached-Eddy Simulation (DES) technique
for smooth-surface separation. Unsteady Reynolds-averaged simulations are much less accurate than
DES for LS cases, but very close for TS cases. Cases with a more intricate relationship between
transition and separation are left for future study.

Key words: separation, simulation, cylinder, turbulence.

1. Motivation

The DES treatment of turbulence, described in the appendix, is aimed at the pre-
diction of separated flows at unlimited Reynolds numbers and at a manageable
cost. The claim is that it soundly combines fine-tuned Reynolds-Averaged Navier–
Stokes (RANS) technology in the boundary layers, and the simple power of Large-
Eddy Simulation (LES) in the separated regions [26]. In the RANS regions, the
turbulence model has full control over the solution, but it is used within a plausible
envelope. In the LES region, little control is left to the model, the larger eddies are
resolved, and grid refinement directly expands the range of scales in the solution,
and therefore the accuracy of the nonlinear interactions available to the largest
eddies [24]. The computing-cost outcome is favorable enough that a challenging
separated flow, namely an airfoil at high angles of attack and fairly high Reynolds
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numbers, was treated quite successfully on personal computers [23]. This is the
case although DES is a three-dimensional, time-dependent approach.

The sphere and the circular cylinder are obvious test cases for an approach with
claims over separated flows. Constantinescu and Squires [5] present a DES study of
the sphere, which is roughly as successful as the present one but does not include
TS cases (also, RANS is more accurate in their flow than here). Our work on a
thin airfoil [23] exercised both the RANS and the LES capability of DES, but not
truly in the same solution. A pure RANS method would give the same solution as
DES at low angles of attack, the flow being attached. A pure LES method could
give fair results at high angles of attack, the major features of the flow having little
sensitivity to the boundary-layer turbulence (which an LES of the whole domain
could not resolve with present computers). After massive separation the smaller
eddies which depend on the subgrid-scale (SGS) and molecular viscosities have
little control, and even a Reynolds number of 250 preserves much of the physical
character of the flow, such as three-dimensionality and shedding modulations [14].
Our airfoil paper also lacked extensive grid-refinement studies, and we include
some here.

A point of great interest in DES is the “grey area” between RANS and LES
regions. At separation, the shear layer has no “LES content” (i.e., 3D unsteady ed-
dies the size of the boundary-layer thickness). DES is most plausible if a rapid new
instability, of larger scale, overwhelms the turbulence inherited from the boundary
layer if any. This is more likely when separation is from a sharp edge or at least a
thin one, as on the airfoil. The cylinder is less forgiving, and a better test case for
“grey-area failures”.

Finally, the cylinder is known for its drag crisis, which reflects the great differ-
ences in separation between laminar and turbulent boundary layers. Cases with
turbulent separation are out of reach of whole-domain LES. The challenges in
DES are not trivial. Laminar-separation (LS) cases are not challenging in terms
of separation prediction proper; however, the model needs to be dormant in the
laminar region, and arise in a spontaneous manner after separation, which can
be delicate. Shur et al. [22] introduced the trip-less (TL) approach. The inflow
eddy viscosity is zero, or at least much smaller than the molecular viscosity. The
front part of the boundary layer then also has zero eddy viscosity. The recirculation
region has non-zero eddy viscosity, and these finite values propagate upstream to
the separation region. There, eddy viscosity diffuses into the separating shear layer.
The vorticity in that layer causes rapid production of eddy viscosity, which then
enters the recirculation region. The result is a self-sustaining eddy-viscosity field.
It occurs only if non-zero values were placed in the initial condition, but the details
of the initial field are erased. The mature solution depends only on the turbulence
model, and no transition information (location, extent) is provided by the user. We
have used the TL approach for the cylinder flow in 2D unsteady RANS (URANS)
[22] but with coarser grids than here, and for a separation bubble in 2D RANS [28].
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Turbulent-separation (TS) cases give the model control over separation, which
stresses its accuracy as in traditional RANS tests. Therefore, a campaign including
both LS and TS cases presents a few possibilities for failures. TS cases use either
one of the standard methods to obtain eddy viscosity in the attached boundary
layer with the S-A model. The first method is to use the trip term [25], with the
trip placed on the front of the cylinder, say atθ = 60◦. This is a source term added
locally to the eddy-viscosity transport equation. The second, which we used, is to
set the inflow value of eddy viscositỹν to about 5 times the molecular viscosity.
The result is that as soon as fluid enters the boundary layer, the production term
is active and the eddy viscosity rapidly comes into equilibrium with the velocity
field, with turbulent profiles. In all cases, the Turbulence Indexit indicates the state
of the boundary layer [25].

To summarize, the conditions which distinguish LS and TS cases are the follow-
ing. LS cases havẽν = 0 at the inflow boundary, but̃ν 6= 0 in the initial condition.
TS cases havẽν 6= 0 at the inflow boundary. Non-zero inflow or initial values for
ν̃ are of the order of 5 times the molecular viscosityν.

All studies of flows in 2D geometries, whether experimental or numerical, face
the challenge of understanding and conveying the dependence on boundary con-
ditions in the third direction. We have no doubt that 3D simulations are necessary
for “2D” bluff-body flows [9, 12, 14, 18]. These bring in arbitrariness in the type
of spanwise conditions and the domain size3z. We have used periodicity and
3z = 2 × D, whereD is the cylinder diameter, and did not conduct extensive
sensitivity tests. Other bluff-body studies have used lengths up to 2π×D, showing
very acceptable differences; recent cylinder work used 1×D to π ×D [3, 8].

Note how different the criterion used for setting3z for bluff-body flows has
been from that used in DNS of channels or boundary layers [10]. There, a negligible
correlation at a half-period in the spanwise direction is the goal. In bluff-body
flows, a strong correlation of the shedding over the period is deemed acceptable,
and two-point correlations rarely presented [29, 30]. This is true in simulations, and
also in experiments: for instance Schewe presented the lift signal from a balance
for a model with a length equal to 10×D, thus recognizing coherence over at least
that distance [21]. A numerical domain-size study aimed at bringing the two-point
correlation to small values appears hopeless. Szepessy’s experimental results [30]
suggest a bare minimum of 15×D. The best we can do is to demonstrate that our
results have a weak enough sensitivity to significant changes in the domain size,
preferably a doubling.

DNS, LES and DES in nontrivial geometries make grid design a broad chal-
lenge. Systematic tests may give the most reliable answers, but are extremely
time-consuming. Also, measures of success are ambiguous, especially when the
numerous sources of error compensate. It would be naïve to adjust an aspect of the
method just to obtain a “perfect” drag coefficientCd , for instance. In a recent LES
study it was found “astonishing” that grid refinement did not always improve res-
ults, where “improve” meant “bring closer to experiments” [3]. An excellent point.
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Therefore, we view grid changes more as tests of soundness and sensitivity than
as a search for perfection. We apply simple rules for grid design, such as seeking
cubic grid cells in the LES region (the SGS eddies being statistically isotropic in
the first approximation) and describing each grid with only a representative grid
spacing1. We may find later that the rules were sub-optimal, but we observe that
refinement is more convincing if the grid is refined in all directions simultaneously,
instead of one at a time.

Based on these observations we believe that the cylinder taken over the LS and
TS régimes represents a substantial test case for DES, giving the opportunity to
show that it is very competitive with both RANS and LES. Success would suggest
that hybrid methods, while unattractive “engineering” tools in the eyes of some,
will be the basis of turbulence prediction for a large class of flows.

2. Simulations

2.1. NUMERICAL CHARACTERISTICS

The cases are split into series with laminar separation, LS1 to LS9, and turbulent
separation, TS1 to TS12, see Tables I and II. The full matrix of cases has not
been filled; in particular, only one fine-grid case is available, LS3. Further fine-grid
LS cases will be valuable, but they take months, and will be launched only after
deeper study of the optimal grid and time step. Fine-grid TS runs do not appear
necessary in view of the very weak grid dependence from coarse to medium. LSE
and TSE denote the experimental references [1, 4, 15, 19–21]. LSJ is the LES of
Jordan and Ragab [8] at Re= 5,600, and the Reynolds-number difference must
be kept in mind. LSB is the LES of Breuer [3] at 140,000; we selected the more
representative of his cases (A1, A2, B1, B2), which still leaves a fair amount of
scatter (also note that the time-step comparison is misleading since our code has
about 20 subiterations per full time step). LSA and TSA are 2D unsteady Reynolds-
averaged simulations, and L2D and T2D are 2D DES (such simulations are not
natural, and only run as thought experiments).

Within the LS and the TS series, cases differ by their Reynolds number, grid
spacing, and model (some include the rotation/curvature term [27], as indicated in
the “RC” column). The Reynolds-number dependence should be weak once the
separation type is specified. We are aiming at the simpler flow types, denoted as
TrSL3 (transition in the shear layers, upper Reynolds-number range) and T (fully
turbulent) by Zdravkovich [31]. The grid spacing1 in the table denotes the “target
1” and is measured near(x, y) = (0.75,0.5), where there is high activity and the
solution is clearly of LES type. Recall that the local1 in DES is the largest of the
spacings in all directions, herer, θ , andz. The 3D grids are balanced, in the sense
that1z is close to the target1, thus resulting in the cubic grid cells mentioned
in Section 1. The1 ratio between successive grids is about

√
2, and all terms are

treated to at least second-order accuracy. Typical values for the CFL number are
0.5 in the wake, and 2 outside the boundary layer at the crest of the cylinder.



DETACHED-EDDY SIMULATIONS PAST A CIRCULAR CYLINDER 297

Table I. Summary of cases.

Run Re Grid 1 1t RC t Cd −Cpb
LS1 5× 104 118, 105, 30 0.068 0.05 n 200 1.05 0.98

LS2 5× 104 150, 109, 42 0.048 0.05 n 127 1.26 1.28

LS3 5× 104 210, 135, 57 0.034 0.035 n 186 1.32 1.39

LS4 5× 104 118, 105, 30 0.068 0.05 y 104 1.17 1.15

LS5 5× 104 150, 109, 42 0.048 0.05 y 99 1.14 1.08

LS7 1.4× 105 118, 109, 30 0.068 0.05 n 200 0.87 0.81

LS8 1.4× 105 150, 109, 42 0.048 0.05 n 280 1.08 1.04

LSJ 5.6× 103 241, 241, 32 – – – 30 1.01 1.02

LSB 1.4× 105 325, 325, 64 – 0.0002 – 65/170 1.22/1.45 1.4/1.8

LSA 5× 104 210, 135 0.034 0.035 n – 1.8 2.23

L2D 5× 104 210, 135 0.034 0.035 n – 1.77 2.05

LSE ≈ 105 – – – – – 1.15/1.25 1.2

TS1 1.4× 105 118, 105, 30 0.068 0.05 n 200 0.57 0.65

TS2 1.4× 105 150, 109, 42 0.048 0.05 n 158 0.59 0.67

TS4 1.4× 105 118, 105, 30 0.068 0.05 y 88 0.64 0.70

TS5 1.4× 105 150, 109, 42 0.048 0.05 y 73 0.65 0.70

TS7 3× 106 118, 115, 30 0.068 0.05 n 50 0.41 0.53

TS10 3× 106 118, 115, 30 0.068 0.05 y 24 0.51 0.64

TSA 1.4× 105 150, 109 0.048 0.035 n – 0.56 0.59

T2D 1.4× 105 150, 109 0.048 0.035 n – 0.83 1.18

TSE ≈ 5× 106 – – – – – 0.5/0.8 0.5/0.9

The numerical method uses a fifth-order upwind scheme, and an implicit
three-layer second-order-accurate scheme for time integration, with artificial com-
pressibility. Constantinescu and Squires [5] also adopted a fifth-order upwind
scheme after experimenting. The use of upwind, monotone, or otherwise dissipat-
ive discretizations in DNS, LES or DES is controversial. We would prefer centered
schemes of course, and used one for LES of homogeneous turbulence [23]. How-
ever, for the cylinder, just as for the airfoil, this scheme does not work due to a lack
of stability resulting in spatial oscillations of the solution, first of all, in the RANS
regions. The causes are well known. They are: high values of the cell Reynolds
number (even based on eddy viscosity), dispersion, especially at angles to the grid
lines, non-uniform grid spacing and coefficients, nonlinearity. We are developing
an algorithm that is centered in LES regions, and upwind-biased in the RANS and
irrotational regions.

We consider that numerical issues will permanently require attention. However,
a statement such as “upwind schemes are unacceptable for LES” cannot be correct.
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Table II. Summary of cases.

Run C′l St θsep Lr Lvv u′u′max u′v′max v′v′max

LS1 0.21 0.22 78◦ 1.3 1.5 0.20 0.13 0.46

LS2 0.48 0.21 80◦ 0.8 0.9 0.34 0.17 0.66

LS3 0.66 0.20 96◦ 0.8 0.9 0.37 0.15 0.62

LS4 0.40 0.19 80◦ 0.9 1.1 0.26 0.14 0.56

LS5 0.27 0.20 78◦ 1.1 1.3 0.25 0.14 0.53

LS7 0.10 0.23 78◦ 1.5 1.7 0.15 0.11 0.38

LS8 0.29 0.21 77◦ 1.1 1.2 0.25 0.14 0.50

LSJ 0.12 0.21 87◦ – 1.6 0.20 0.12 0.42

LSB – 0.20/0.22 95◦ 0.4/0.6 1.2 – 0.13/0.15 0.8/1

LSA 1.47 0.22 90◦ – – – – –

L2D 1.39 0.14/0.20 – – – – – –

LSE 0.24/0.6 0.18/0.21 80◦ 0.44/0.75 1.1 0.25 0.12 0.44

TS1 0.08 0.30 99◦ 1.1 1.3 0.12 0.09 0.32

TS2 0.06 0.31 99◦ 1.2 1.3 0.13 0.10 0.35

TS4 0.10 0.28 94◦ 1.2 1.4 0.13 0.08 0.31

TS5 0.06 0.28 93◦ 1.4 1.4 0.13 0.09 0.33

TS7 0.06 0.35 111◦ 1.0 1.2 0.12 0.08 0.27

TS10 0.10 0.33 106◦ 1.0 1.1 0.14 0.10 0.35

TSE 0.05/0.13 0.2/0.28 110◦ – – – – –

If a numerical method is consistent, grid refinement by a sufficient ratio reveals the
magnitude of the numerical errors and prevents serious deception. Note also that
energy conservation by centered schemes degrades on non-uniform grids, and that
none of the time-integration schemes in common use are energy-conserving. In the
LES regions of the present simulations, the energy removal by upwinding is com-
parable with the removal by the SGS model. This was ascertained by varying the
CDES constant (defined in Appendix A), and finding a much weaker sensitivity than
in our study of homogeneous turbulence with a centered scheme. We accept the fact
that numerical errors are not driven to negligible levels. The principle remains that
concurrent grid and time-step refinement reduces all sources of numerical error,
as well as the SGS viscosity. The latter is not formally a numerical error, but we
normally wish to reduce it, as long as the grid can resolve the resulting field.

The grid count is reported in the directions(θ, r, z). The grids have three blocks,
with a coarser spacing in the irrotational region, relative to the near-wall and wake
regions. This is seen in Figure 1. As a result, the grid reported here as(150,109)
has only about 10,000 points.



DETACHED-EDDY SIMULATIONS PAST A CIRCULAR CYLINDER 299

Figure 1. Medium computational grid, Case TS2. Inner block 150× 36, wake block 74× 36,
outer block 59× 30. The three blocks meet nearx = 1.06,y = 1.03.

Figure 2. Visualisation of Case LS5. Surfacesλi = 1.

Reported in Table I are the time samplet normalized with freestream velocity
U∞ andD, drag coefficientCd , and base pressure coefficientCpb. Table II con-
tinues with the lift-coefficient rmsC ′l , Strouhal number St, and separation angle
θsep, based on the skin friction crossing zero.Lr is the length of the recirculation
bubble, from the base to the zero-mean-velocity point on the centerline, andLvv is
the location of the peak inv′v′, relative to the back of the body. The Reynolds-stress
peaks are taken in the wake, off-centerline foru′u′ andu′v′.
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Figure 3. Time-dependent forces. Upper curves,Cd ; lower,Cl . —, LS1; - - -, LS8.

2.2. RESULTS

2.2.1. Time-Dependent Behavior

The flow visualisation in Figure 2 is meant to build confidence in the three-
dimensional character of the solutions, and the domain size. The grid resolution
is the medium one. We use the imaginary partλi of the eigenvalue of the velocity-
gradient tensor, as suggested by Perry and Chong [17] to bring out vortices. The
figure reveals a dominant 2D von Kármán vortex-shedding mode, but also intense
vortices transverse to the von Kármán vortices. It is very consistent with DNS and
LES studies of similar flows. This figure and Figure 4 below reflect how DES func-
tions in the boundary layers: the resolved solution is smooth, with weak variations
in z and t . In TS cases the resolved field has the same appearance as in these LS
cases: the boundary-layer turbulence is fully modeled, and its large eddies are not
represented.

Figure 3 illustrates the strong modulations of the shedding phenomenon, with
a time scale of the order of 10 times the von Kármán shedding period, but not
a simple beating behavior. Higher drag comes with higher lift amplitude. This is
very consistent with DNS for the flat plate at 90◦ [13], LES for the circular and
square cylinders [2, 18] and experiments [4, 7, 21]. The modulations are not as
severe as for the flat plate, based on both simulation and experiment. Short-term
Cd averages for the flat plate vary from 2 to 3; here, the extremes are only about
20% different. Najjar and Balachandar also report a frequency shift; the cylinder
results also contain a shift, of the order of 5%. The spectra do not show any peaks
away from the principal one at St= 0.21 and 0.22. For both cases in the figure, an
initial transient of length 20 was removed. The figure shows that removing 30 more
units would have been preferable. In fact, based on the first 10 shedding cycles (t ≤
50), one would conclude that the two cases are permanently different. However
the rest of the samples negates that impression. The phenomenon of modulations
does not appear related to smooth-wall separation, since it is present for the flat
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Figure 4. Vorticity contours in a plane of Case LS2. Left, at time of strong lift oscillations;
right, weak oscillations.

Figure 5. Time-dependent forces, case TS1. Upper curves,Cd − 0.3; lower,Cl . —, spanwise
average; - - -, unaveraged.

plate [13]. Clearly, fine comparisons between drag coefficients, for instance, are
drastically limited by this feature of the flow, particularly for the fine grids which
preclude samples much beyond 100 time units on our computers. Any simulation
studies that used only one or a few shedding cycles as a sample should be seriously
re-examined.

Figure 4 reveals a marked visual difference between a time of high lift oscilla-
tions and one of low oscillations. These two frames are from one simulation, which
is ostensibly mature in both cases:t = 99 andt = 133. Yet, a first scan of the fig-
ures would suggest that they have different grids or turbulence models. The change
in flow pattern is quite similar to that described by Najjar and Balachandar [13]. On
the other hand we doubt very much that it is related to that found experimentally
by Norberg [16, §3.4] and attributed to the effect of finite end plates.

Figure 5 compares the forces averaged over the span 2×D of the domain and
the forces on a particular section of the cylinder (onez value), as a diagnostic of
the spanwise coherence. This figures illustrates, incidentally, that the modulations
are nearly as pronounced in TS flows as in LS flows. However, note the different
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Figure 6. Correlation between global results, LS and TS cases.◦, CFD;4, Exp.

scales from those in Figure 3. The lift flatness factorC4
l /(C

2
l )

2 is 2.1 here for
TS1, but 2.6 for LS1 (recall that a high flatness factor reveals irregular signals with
large excursions, and that a sine wave gives a flatness equal to 1.5). The averaged
and unaveraged lift signals have a very high correlation coefficient: 0.95. The rms
is barely lower for the averaged lift than for the section lift: 0.077versus0.080.
The conclusion is that the three-dimensionality is not coherent enough to drive the
section lift (z = 0) until it differs much from the averaged lift (0≤ z < 2D).
Pointwise measurements could display larger differences. We conclude that in the
range up to a few diameters, the spanwise domain size controls the lift rms less than
we feared, and so comparisons between studies with somewhat different domain
sizes are meaningful not only for the drag, but also for the lift.

2.2.2. Average Wall Quantities

Figure 6 displays the strong correlation between the major statistical results. LS
points are clustered high in the figures (Cd always being the vertical axis) and have
much variability, while TS points are low, and have less variability. We offer no
hypothesis for why this is. TS cases have a larger effective statistical sample since
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Figure 7. Pressure coefficient, LS cases. (a, b, c)◦, Exp., Re= 6× 104 [15] (a) treatments,
Re= 5× 104; —, LS2 (3D DES); - - -, LSA (2D URANS); - — -, L2D (2D DES). (b) grids,
Re= 5×104; - - -, LS1 (coarse); —, LS2 (medium); - — -, LS3 (fine). (c) Reynolds number;
—, LS2 Re= 5× 104; - - -, LS8 Re= 1.4× 105 medium grid; - — -, LS7 Re= 1.4× 105

coarse grid;4, Exp., Re= 1.4× 105 [4]; ∗, Exp., Re= 2× 105 [15].

their frequency is higher, but not enough to make such a difference. The LS7 case
nearly bridges the LS and TS series, and will be discussed shortly.

Of course, the correlation betweenCd andCpb is nearly trivial. That betweenCd
andLr is also unmistakable and in the same direction as for the flat plate [13], but
unlike the one withC ′l andSt it does not appear to plausibly place LS and TS flows
on the same curve. Drag is correlated with shedding frequency (also apparent in
Figure 3, where it can be seen by measuring the period of the lift coefficient during
low- and high-drag conditions), in the expected direction: lower frequency for a
wider wake. Finally, the correlation betweenCd andC ′l (which is evident both
between cases and in time, see Figure 3) is non-trivial and instructive. However,
Figure 6 probably represents a failure to obtain unique results even using samples
which appear very long. Table I shows thatC ′l is not correlated with numerical or
model parameters, except within the LS1–LS3 series.

We conjecture that our system of equations has an attractor with chaotic prop-
erties. Roughly, the attractor appears to be entered in about 20 time units, or 4
shedding cycles, but an even coverage of it requires on the order of 200 time units,
based on Figure 3. Even this figure of 200 may be an under-estimate. Schewe
showed flow régimes sustained for over 100 time units, as did Breuer [2] with
LES. The outlying point atC ′l = 0.66 in Figure 6 is LS3, with a sample of 186
time units.

Figure 7 compares LS pressure distributions and the subcritical experiments
[4, 15]. The pressure coefficient slightly exceeds 1 at the stagnation point. This
error decreases as the grid is extended to larger radii, while the base pressure is
insensitive. We estimate that with an infinite domain the drag coefficient would
be about 0.02 lower than the present values, obtained with a grid to 15× D.
Full DES performs much better than either 2D URANS and 2D DES (Figure 7a).
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Figure 8. Pressure coefficient, TS cases.◦, Exp., Re= 8.5×106 [19];4, Exp., Re= 7.6×106

[20]. (a) grid and model; - - -, TS1; —, TS2; - — -, TS4; – – –, TS5. (b) treatment; —, 3D
DES (TS2); - - -, 2D URANS; — -, 2D DES. (c) Reynolds number and model; —, TS2; - - -,
TS7; - — -, TS10.

Two-dimensional simulations give too much drag [11, 14, 22, 23]. The difference
between DES cases is tangible; in other words, grid convergence is not achieved
for LS cases. This is consistent with the findings of Breuer [3], who used finer
grids than even our fine one, at Re= 140,000. The trend in Figure 7b is smooth
and monotonic from coarse through medium to fine grid, suggesting that sampling
errors are minor. Unfortunately, while the medium-grid results are very close to
the experiment, the fine-grid results move away from it. Similar simulations [8, 12]
also reveal drifts in the drag coefficient, for instance, and some of the time samples
used in these studies are clearly too short. The Reynolds-number test in Figure 7c
also brings a disappointment in the sense that the base pressure is sharply increased,
in contrast with the experimental trend which is a slight decrease. Flow visualiz-
ations reveal vortex roll-up in the shear layer shortly after separation, leading to
a much increased pressure recovery, which is premature for a smooth cylinder at
Re = 1.4 × 105. This may be described as under-resolved transition. The phe-
nomenon is weaker on the medium grid, LS8, than on the coarse LS7 which appears
blatantly under-resolved. Unfortunately the fine-grid case LS9 is not available, and
there is no proof that a grid finer than LS9 will not be needed. Such a grid would
approach DNS over the crucial region of the flow, which is the extreme limiting
behavior of DES.

In Figure 8 the TS results are from two grids, two models and three turbulence
treatments at Reynolds number 1.4× 105 and 3× 106. The TS situation would be
obtained in an experiment by tripping the boundary layer well ahead of separation,
but here we compare with untripped experiments at very high Reynolds numbers.
We assumed that transition would be complete in the boundary layers long be-
fore separation. In Figure 8 the disagreement between experiments is tangible, in
terms of crest and base pressure although not much in terms of apparent separation
location. DES results fall between experiments, and the TS cases give much less
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Figure 9. Skin-friction coefficient. (a) LS cases; —, LS2, Re= 5 × 104; - - -, LS8,
Re= 1.4×105; ◦, Exp., Re= 1×105 [1]. (b) TS cases; —, TS2; - - -, TS5; - – -, TS7; – – –,
TS10;◦, Exp., Re= 3.6× 106 [1].

concern over grid effects than the LS cases. A turbulent separating layer is less
grid-sensitive than one that is on the verge of transition.

Figure 8b shows that in a TS case, URANS results are very close to DES results.
The 2D DES is also closer to full DES here than in the LS flow. A likely reason is
that the TS flow has much weaker shedding and a narrower wake, which reduces
the role of the largest eddies in setting the Reynolds stresses. Figure 8c shows
Cases TS7 and TS10, with a high Reynolds number. The grids are coarse and the
samples not very long, but the results are smooth. Separation occurs noticeably too
late in TS7, putting the base pressure somewhat outside the experimental bracket,
and the drag coefficient clearly outside the bracket. This is greatly improved by the
curvature term in the turbulence model for TS10.

We turn to skin friction. Figure 9a reveals a fair agreement for LS cases, using
the scaling by

√
Re as appropriate for laminar boundary layers. We use Achen-

bach’s skin friction, the only one available, even though we omitted his pressures
from other figures [1]. These pressures are consistently lower than in the majority
of experiments, implying a higher edge velocity for the boundary layer and there-
fore a higher skin friction, by roughly 10%. Figure 9a is consistent with this effect,
but the differences are near 20%. After separation, all datasets give low values, but
the agreement is rather poor, even qualitatively. Statistical noise is evident in the
simulations.

Figure 9b displays drastic differences between simulation and experiment for
the skin friction in TS mode. The simulations are fully turbulent and produce
typicalCf levels based on boundary-layer edge velocity, but it is clear that Achen-
bach’s experiment had laminar boundary layers up to near the separation line even
though we took his highest Reynolds number. It is a signal that fully turbulent sim-
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ulations arenot the definitive approach even at Reynolds numbers in the millions.
With Re = 1.4 × 105 in TS2 and TS5, the eddy viscosity is in fact low under
the favorable pressure gradient especially with the RC term, and the skin friction
is essentially the same as in laminar flow:Cf

√
Re peaks at 5.6, which compares

closely with Figure 9a once we recall the higher edge velocities in TS flows. This
is consistent with our experience that tripping the boundary layer somewhere in
the favorable gradient instead of growing eddy viscosity from the stagnation point
does not affect separation much at all [22]. The high-Reynolds-number TS7 and
TS10 cases have interesting features. First, the initialCf rise forθ ≤ 15◦ is close
to the laminar level. Second, the skin friction is very weak after separation, as in
the experiment. Third, separation is late in TS7, which indicates that the RC term is
more beneficial at this Reynolds number than at lower ones. The ratio of boundary-
layer thicknessδ to the radius of curvature is 0.013, so that a very noticeable effect
was to be expected on the turbulence level and skin friction.

Figure 9b leaves us with a serious concern over the transition/ separation phys-
ics, in the sense that transition may never be complete upstream of separation. It is
not simple to decipher the experimentalCf distributions, which are time-averaged.
Achenbach’s at Re= 8.5×105 has a narrow peak that evidently reveals transition,
but curiously the peak is absent at 3.6× 106. Roshko shows a pressure distribution
by Flachsbart at Re= 6.7× 105, with a clear flat spot as with a separation bubble.
Presumably, the much weaker shedding amplitudes at that Reynolds number al-
lowed the feature to show through the time averaging. See also Cantwell’s result
at 1.95× 105 (not shown here). Normally, the sequence of laminar separation and
turbulent reattachment is within the reach of RANS models, functioning in trip-
less mode as in our LS cases here [28]. However, it may require a finer grid than is
practical for a complete geometry.

2.2.3. Statistics in the Wake

Figure 10 contains velocity profiles and contours. The agreement with experiment
[4] is poor, particularly on the corser grid, as the mean recirculation bubble closes
much farther downstream. Its lengthLr also displays rather wide variations in the
table, correlated with the lift rms,C ′l and the drag coefficientCd as mentioned
in the context of Figures 3 and 6. Breuer [3] also had tangible variations, and it
appears that wake statistics are far from converged in simulations, whether DES,
LES or probably even DNS. It is not simple to attribute these difficulties between
spatial, temporal, domain-size and sampling errors. Our results would agree better
with experiments at lower Reynolds numbers [18]. This might be a consequence
of weak mixing, due to a lack of resolution. In our grid design, we gave the wake
beyond one diameter a low priority.

Figure 11 shows qualitative agreement with experiment [4] for the Reynolds
stresses in the wake, but the quantitative disagreements are very tangible in the
roll-up region, forx < 2.5. The agreement is considerably better nearx = 4, for
reasons unknown. We observe smaller differences between our cases than Breuer
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Figure 10. Centerline velocityUcl , Re= 1.4× 105. Left, lines;◦, Exp. [4]; —, LS7; - - -,
LS8. Right, contours; Upper, LS8; lower, Exp. [4].

Figure 11. Reynolds stressesu′u′, v′v′ and u′v′. Upper, LS8; lower, Exp. [4]. Contour
intervals 0.0125, 0.0126, and 0.022.

did between his. Peak values are given in Table II. Our values exceed the measure-
ments, as well as most previous LES results [8]. The low Reynolds number of the
LES, namely less than 6,000, contributes to this, but the experiment was at 140,000.
It is also curious that our higher stresses would allow alongerrecirculation bubble
than in the experiment, and also that the location of the peakv′v′ agrees quite
well, when the bubble length does not (Table II). It is tempting to challenge the
experimental value ofLr , but it would be unusual to place a higher confidence
in Reynolds-stress measurements than in mean-flow measurements, especially in
view of the emphasis on the flying-probe technique. Note also that Cases LS2 and
LS3 are much closer to experiment forLr , but much farther for the stress levels.
They follow the expected trend, that more intense turbulence makes the bubble
shorter.

3. Outlook

This study of the circular cylinder with laminar and with turbulent separation and
Reynolds numbers up to 3×106, using Detached-Eddy Simulation, met with partial
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success. The upper limit for complete success today appears to be a Reynolds
number of a few thousand [11, 18], and these simulations are essentially direct
simulations. We place hopes in further efforts with finer grids and lower numerical
dissipation, but numerical quality alone will not resolve the transition issues. Our
treatment of transition could be described as simplistic, considering the subtleties
of the circular cylinder; we could expect to reproduce the gross effect of the drag
crisis, and we did. The principal lessons concern the logistics of simulations for
chaotic systems, the transition issues, and the DES technique.

Regarding chaotic behavior, it is satisfying for simulations to reproduce that
feature of the experiment. It is another element of confidence. Unfortunately the
logistical consequences are heavy. The length of time samples needed to firm
up a drag coefficient to much less than 5% is considerable. This makes rigorous
comparisons between methods, grids, or turbulence models dubious, once a good
accuracy level has been reached [3]. The rather disturbing scatter in experiments
further damages the level of focus that is achievable especially in the TS range, and
we must always be alert for compensating errors.

Regarding transition, many challenges remain. We planned on avoiding the
critical boundary-layer states and entered the study with the assumption that at
postcritical Reynolds numbers (Re≥ 3 × 106) the boundary layers were turbu-
lent well ahead of separation, leading to a relatively simple modeling problem
(equivalent to tripping the flow in an experiment). This assumption is negated by
skin-friction measurements, and in fact our own post-processing transition calcula-
tions (not shown). Fortunately, this does not appear to displace the separation point
much. However, the Reynolds-number range from 105 to 3× 106 is too wide to
ignore, and we are planning an effort in that range. A striking outcome would be
to observe unprovoked asymmetric states (but preliminary runs with the boundary
layer tripped on one side only give a rather low lift coefficient,Cl ≈ 0.35). We
can only hope that the sensitive Reynolds-number range is narrower in practical
applications.

Regarding DES, the fair stability of the results under grid, model, and Reynolds-
number changes is a favorable finding, although the Re= 140,000 case demands
much further study. The ability to sustain three-dimensionality in a 2D geometry
is confirmed, and the shedding frequencies are very good. While the agreement
with experiment is not perfect, major features of separated flows such as the level
pressure on the back of the cylinder are correct with DES, and not with URANS.
On the other hand, we are unable to demonstrate “grid convergence” even with a
factor of 2 change in all directions. For us as for Breuer [3], the rewards of grid
refinement are uncertain. We are running a complex numerical-physical system
with numerous sources of error, especially in TS cases; when these compensate,
the reduction of one error does not drive the solution towards perfection. Perfection
could not even be recognized, since it is not achieved in experiments.
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Appendix A: Background on DES

A.1. DEFINITION OF THE TECHNIQUE

A Detached-Eddy Simulation is a three-dimensional unsteady numerical solution
using a single turbulence model, which functions as a sub-grid-scale model in
regions where the grid density is fine enough for a large-eddy simulation, and as a
Reynolds-averaged model in regions where it is not. Essentially, SGS function or
“LES mode” prevails where the grid spacing in all directions is much smaller than
the thickness of the turbulent layer. The model senses the grid density and adjusts
itself to a lower level of mixing, relative to “RANS mode”, in order to unlock the
larger-scale instabilities of the flow and to let the energy cascade extend to length
scales close to the grid spacing. In other regions, primarily boundary layers, the
model is in RANS mode (however the computed solution is generally unsteady
also in this region). There is a single velocity and model field, and no issue of
smoothness between regions.

A formulation based on the one-equation S-A model is the following [26]. The
standard RANS model uses the distance to the closest wall,d, as a length scale [25].
The DES modification consists in substituting ford, everywhere in the equations,
the new length scalẽd. This length depends on the grid spacing1:

d̃ ≡ min(d, CDES1),

where1 is based on the largest dimension of the grid cell:

1 ≡ max(1x,1y,1z).

Here we have assumed for ease that the grid is structured and that the coordinates
(x, y, z) are aligned with the grid cell, but the generalization is obvious. Since
the adjustment ofCDES matters most when the cells are nearly cubic, a general
definition covering unstructured grids is to take for1 the diameter of the grid cell,
divided by

√
3.

The empirical constantCDES was calibrated to 0.65, and is not very critical [23].

A.2. RAISON D’ ÊTRE OFDES

DES is a response to two considerations which arise in the treatment of turbulence
at the Reynolds numbers encountered in transportation [26]. The first is that the cost
of LES in the entire boundary layer, if turbulent, exceeds our computing power by
orders of magnitude. This would be true even if the problem of “wall modeling”
in LES were to be solved so that, in contrast to most LES methods today, the grid
spacing became unlimited in wall units. Therefore, RANS is the only choice for
most of the boundary layer.

The second consideration is less clear cut, but also critical. The flow past
vehicles and airplane components such as the landing gear causes massive three-
dimensional separation. The hope that RANS turbulence models will soon achieve
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engineering accuracy in these regions is not supported by their rate of progress over
the last twenty years, even at the highest complexity level (full Reynolds-stress
transport), and even with the benefit of unsteady solutions. Reynolds averaging
may create an unsurmountable problem when the dominant eddies are highly
geometry-specific, in contrast with the fairly “standard” eddies found in the few
thin shear flows used to calibrate models. Some structural and noise applications
also require unsteady flow information (including frequencies higher than those al-
lowed by unsteady RANS). Therefore, LES is an attractive choice for the separated
regions.

Let us denote byL the overall size of the flow, andl the local size of the
energetic eddies. In LES the grid spacing needs to scale withl, at the largest, in
fact a buffer of eddy sizes that are less geometry-specific is needed for an accur-
ate simulation. Although eddies which have escaped from the wall in a separated
region, or “detached eddies”, satisfy the relationshipl � L, they still create a
manageable computing problem, say of the order of 643 grid points. In contrast,
the boundary layer imposesl � δ � L, which is considerably more severe once
the four dimensions are taken into account.

A DES solution has regions in which̃d = d, and the model functions as a RANS
model. These correspond to boundary-layer type grids, which have1 � δ ≥ d.
The solution also has regions in which̃d = CDES1, and the model functions as
a subgrid-scale (SGS) model. This is seen from dimensional analysis, and was
verified in homogeneous turbulence: for a given dissipation rate the eddy viscosity
scales with14/3, and indeed allows the energy cascade down to a length scale
proportional to1. The two regions are not explicitly distinguished, or coupled;
there is a single velocity and eddy-viscosity field. The same equations are solved,
it is only that d̃ is on thed or theCDES1 branch. The behavior of the model
is controlled by the user, when designing the grid. Relative to unsteady RANS,
the change of formulation is very minor; however, the DES poses a much heavier
challenge to the numerical accuracy, in space and time.

The region in whichd andCDES1 are of the same order, called “grey area”,
needs much further exploration and is discussed in Section 1.

A.3. REMARKS

A.3.1. Length Scales

The formulation in Section A.1 compares the grid spacing1 with the wall distance
d, not the thicknessδ of the turbulent layer (either free shear layer or boundary
layer) as declared earlier in Section A.1. This is not inconsistent, because the terms
that depend oñd are the viscous and destruction terms. As a result, if a shear layer
is thin compared with both the wall distance and the grid spacing, we haveδ � d

andδ � 1, and the terms in question vanish. The model then is in RANS mode
(i.e., insensitive to1). This can happen only if the grid is anisotropic and aligned
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with the thin shear layer. If the grid is refined or the layer thickens sufficiently, the
balance becomesδ ≥ 1, and the model switches to SGS mode.

A.3.2. Filters

In DES the filter is not quantitatively given. It is only known to be of the order of
1. As a result, a set of “filtered equations” is not available, and systematic tests
such as by filtering a DNS field are not possible at this stage. In our opinion, the
practical benefit derived from such tests remains debatable.

A.3.3. Choice of Base RANS Model

DES is presented here as based on the S-A model. This model, and Secundov’s
models [6], offer the most convenient length scale to inject1 and turn a RANS
model into an SGS model. However, the DES/S-A link is not fundamental, and we
have started work with the SST model.

A.3.4. Relationship to Wall-Model LES

Many large-eddy simulations with wall modeling have used treatments that bor-
row from RANS models, notably the mixing-length equation and the van-Driest
damping.DES goes beyond this, in that the model in RANS mode is capable of
treating an entire boundary layer or free shear layer. This is essential to make the
calculation of aerodynamic flows affordable.

A.3.5. Separation Accuracy

In DES, the turbulence is treated by RANS in the boundary layer and slightly
beyond separation. Therefore, the need for accuracy in RANS mode is no less
in DES than it is in pure RANS. An example would be the challenge posed by
the maximum lift of a wing. As a result, DES models will emphasize the RANS
accuracy over the SGS accuracy (most likely, they will be derived from RANS
models). This is acceptable, since LES is weakly sensitive to its SGS model.

A.3.6. Unsteady RANS Simulations

Unsteady simulations with unmodified RANS models in some cases also enable
instabilities, such as the vortex shedding past a bluff body. The difference, relative
to DES, is that grid refinement does not extend the energy cascade. The solution
converges to the smooth solution of the modeled equations, instead of generating
smaller and smaller eddies. Typically, both the three-dimensionality and the shed-
ding modulations are suppressed by the smoothing effect of the model, and these
simulations do not have as large a potential as DES [24].
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